نامساوی های برزین وگاردینگ

thesis
abstract

درصورتیکه ? ? ? ? : یک تابع محدب ، b یک عملگر خودالحاق ، p یک تصویر متعامد در یک فضای تفکیک پذیر هیلبرت h باشد ، آنگاه به نامساوی tr ?(p b|p h ) ? tr (p ?(b)|p h ) نامساوی برزین ( berezin ) گفته می شود. برای فضای سوبولوف hk(?) که r^n ? ? و برای هر , ?? u از این فضا اگر dx ?? (x) d^? ?? (x) d^? ] = ?_?(@0?|?|,|?|?k)???_??a_?? (x) ? ?? و ?? b[باشد ، آنگاه برای هر hk(?) u ? ، ثابت های ‍ c , g وجود دارند ، بطوریکه : ? u ? h_0^k (?) ؛ ?u?_(h^k (?))^2‍‍‍? c b[u,u] + g?u?_(l^2 (?))^2 که به این نامساوی ، نامساوی گاردینگ ( g?rding ) گفته می شود. در این پایان نامه اگر ? یک تابع محدب ، l(?) یک عملگر شبه دیفرانسیل با نماد ? ، ?? مجموعه مقادیر ویژه و m(?) چندگانگی مقدار ویژه ? ? ?? باشد ، تحت شرایطی ثابت می شود که : ? m(?) ?(?) ? re tr l(?(?)) + r ???? که در آن r جمله خطای از همان مرتبه به عنوان جمله باقیمانده در نامساوی گاردینگ است

similar resources

نامساوی میانگین های حسابی - هندسی

در این مقاله، ضمن ارائه اثباتهایی از نامساوی میانگین های حسابی - هندسی، چندین کاربرد آن را بیان می کنیم. به علاوه میانگین های مهم دیگری را معرفی نموده، به توصیف تعمیم های مهم این نامساوی در جبر ماتریس ها و جبر عملگرها می پردازیم.

full text

فرمولبندی هندسی کوانتش تغییرشکل برزین

  In this paper we try to formulate the Berezin quantization on projective Hilbert space P(H) and use its geometric structure to construct a correspondence between a given classical theory and a given quantum theory. It wil be shown that the star product in berezin quantization is equivalent to the Posson bracket on coherent states manifold M, embodded in P(H), and the Berezin method is used to...

full text

بهبودهایی از نامساوی های توابع محدب هندسی برای عملگرها

در این مقاله، تظریفی از تابع محدب هندسی ارائه که به کمک آن چندین نامساوی شناخته شده از توابع محدب هندسی بهبود داده شده‌ است. در پایان نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است. نیز نامساوی‌های بدست آمده برای توابع محدب هندسی عملگری توسیع داده شده است.

full text

نامساوی میانگین های حسابی - هندسی

در این مقاله، ضمن ارائه اثباتهایی از نامساوی میانگین های حسابی - هندسی، چندین کاربرد آن را بیان می کنیم. به علاوه میانگین های مهم دیگری را معرفی نموده، به توصیف تعمیم های مهم این نامساوی در جبر ماتریس ها و جبر عملگرها می پردازیم.

full text

بازنگاهی به نامساوی کشی-شوارتس

در این مقاله به بررسی نامساوی کوشی-شوارتس، تاریخچه و برخی کاربردهای آن می پردازیم و چند اثبات مختلف برای آن ارائه می کنیم. همچنین معکوس های جمعی و ضربی آن را مورد مطالعه قرار می دهیم.

full text

فرمولبندی هندسی کوانتش تغییرشکل برزین

در این مقاله سعی می شود تا کوانتش برزین روی فضای هیلبرت تصویری(p(h مجددا فرمولبندی شود تا از این طریق رابطه (پاد) کوانتش برزین با فرمولبندی هندسی مکانیک کوانتومی آشکار شود. خواهیم دید از این طریق بروشنی می توان دینامیک در کوانتش برزین را مورد مطالعه قرار داد و از کوانتش برزین حد کلاسیک فرمولبندی هندسی مکانیک کوانتومی را به دست آورد.

full text

My Resources

Save resource for easier access later

Save to my library Already added to my library

{@ msg_add @}


document type: thesis

وزارت علوم، تحقیقات و فناوری - دانشگاه مازندران - دانشکده علوم ریاضی

Hosted on Doprax cloud platform doprax.com

copyright © 2015-2023